
1

SSL Anomaly Detection with Self-Organizing Maps
Jeffrey J. Guy

Johns Hopkins University
jjg@jhu.edu

Abstract—Using session-based features as inputs to a self-
organizing map, your author develops an SSL anomaly detector
to highlight any traffic that does not resemble HTTPS traffic.
Additionally, it is shown that a map trained with traffic from
one user browsing the web for a few hours is sufficient to filter
98.6% of HTTPS traffic from a large enterprise network with
thousands of hosts.

I. INTRODUCTION

MOST ENTERPRISE networks use firewalls and
application-level gateways (ALGs) to enforce policies

on permitted outbound traffic. Firewalls are used to allow
or deny traffic per port, ALGs are used to provide network
administrators more granular control for the major protocols.
The most common ALG is the web proxy: also used to cache
popular requests, they are often configured to filter traffic to
prohibited domains.

In a well-configured network, there will not be a TCP
or UDP port allowed outbound through the firewall to an
arbitrary internet address. All DNS is routed through the
organization’s internal DNS server; all HTTP/S through the
web proxy and all email through the email server. After
providing HTTP, DNS and email services to every user, the
remaining communications needs can usually be handled on
a case-by-case basis, with documented firewall exceptions.
The adage ”deny all, allow by exception” applies.

In order to be successful, attackers must write their
malicious code to tunnel over one of these common
application protocols. The idea is not new: open source
implementations exist for DNS tunnels [15], HTTP tunnels
[16], SSL tunnels [17], and many more. By tunneling
arbitrary traffic over one of these “safe” protocols, attackers
can circumvent an organization’s security policy.

As ASCII-based clear-text protocols, HTTP and DNS
tunnels have numerous features that could differentiate
legitimate traffic from malicious traffic. As an encrypted
stream, SSL tunnels have significantly fewer features to
distinguish legitimate encrypted HTTP traffic from illicit
arbitrary traffic wrapped in SSL. There are very few products
in industry to highlight unusual SSL traffic; if malicious code
were to land in a network and connect out via an SSL tunnel,
network administrators have little chance to detect it. This
technique, dubbed a reverse command shell is commonly
used by attackers; the open source exploitation framework

25 April 2010

Metasploit [18] includes several implementations of SSL
reverse command shell shellcode.

This paper demonstrates techniques to classify SSL traffic
to discover potential SSL tunnels. Section II describes the
approach, section III discusses related work, section IV
described the methodology in detail and section V presents
the results. Conclusions are in section VI.

II. APPROACH

A. Motivation
The communication between an HTTP client and HTTP

server is specified by RFC 2616. After establishing a TCP
connection, the client sends something similar to:

GET /path/to/resource.jpg HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0...

If resource.jpg exists on the server and is available
for retrieval, the server sends something similar to:

HTTP/1.1 200 OK
Content-Type: image/jpg
Date: Sun, 25 Apr 2010 17:55:12 GMT
Content-Length: 5656
Connection: close

(5656 bytes of resource.jpg)

In HTTP versions 1.1 and higher, the client may use the
same TCP socket to request multiple resources to minimize
the overhead of establishing TCP connections. After all
resources have been requested, the socket closes.

In contrast, there is no protocol specification for a
reverse command shell. The client application only needs to
communicate with the attacker’s server. The specifics of the
attacker’s wire protocol will vary with his objective, but there
is one commonality we might exploit: the attacker gained
access to the victim computer for a reason. From the server,
he will issue commands to the client and receive some kind
of response. After the client establishes the TCP connection,
the client will send something like:

HELO

The server will respond with some command:



2

length: 7
dir c:\

And the client will respond with the results:

length: 5600
Volume in drive C is DISK\nVolume
Serial...

In the attacker’s protocol, the connection directionality is
the same as HTTPS, but the dataflow semantics are precisely
opposite. In HTTPS, small requests are sent outbound and
large responses are returned. In the attacker’s protocol, small
requests are sent inbound and large responses are returned.

Protocol Bytes to client Bytes to server Duration
HTTPS Large Small Short
Attacker’s SSL tunnel Small Large Long

TABLE I
SUMMARY OF THE ANECDOTAL DIFFERENCES BETWEEN HTTPS AND AN

SSL TUNNEL

If the attacker’s server automates commands to the clients,
the TCP connection times will be similar to that of HTTPS.
However, if the attacker uses the command shell as a remote
command line, he is likely to use a single TCP socket for the
entire session. This will cause the duration of the TCP session
to increase, potentially substantially.

B. Technique

From a collection of packet captures with SSL traffic, the
packets are reassembled into TCP sessions and three features
extracted: bytes from server, bytes from client and duration
in seconds. Using a set of known-good HTTPS traffic, I train
a self-organizing map. The resulting map is used to classify
SSL sessions into “normal” and “abnormal” classes using a
threshold distance from the best-matching node in the map. A
detailed presentation is in Section IV.

III. RELATED WORK

A. Network traffic analysis

There has been significant work in recent years on
techniques protocol identification and fingerprinting. Border
and Prakash are often credited with the first attempts to detect
HTTP tunnels in their 2004 work. [1] They used simplistic
filters from the a variety of sources: formats of the HTTP
header requests, request inter-arrival times, size of a single
HTTP request, time of day of requests, cumulative size of
outbound requests and request regularity. After collecting
data of 30 legitimate users surfing the web for 30 days, they
used the data to establish one-sided confidence intervals, such
that the probability of any legitimate request exceeding the
threshold was very small.

Dusi, et al [2] recently proposed their Tunnel Hunter
technique. Use packet size, inter-arrival time and direction to

develop a protocol classifier. They train the classifier using
traffic collected from their university perimeter, then establish
a variety of tunnels out of the university network and use
their classifier to highlight their traffic.

Tunnel Hunter’s use of packet size, inter-arrival time and
directionality stands in contrast to Border’s large and diverse
set of features. The use of size, arrival times and direction
is increasingly common, due to the remarkable results given
how narrow the features are relative to how much information
is available. In 2004, Wright et al [12] developed a classifier
using profile Hidden Markov Models to differentiate between
different application level protocols. In 2006, Liberatore and
Levine [5] used those features with Jaccards coefficient and
a NaiveBayes classifier to identify the web sites a user was
visiting by watching HTTP requests in an SSH-encrypted
tunnel. As early as 2001, Song et al [11] demonstrated the
use of packet interarrival times in SSH logins to significantly
reduce the keyspace necessary for a brute force attack against
a user’s password.

This paper’s use of flow-based features instead of packet-
based features is unique. The flow features chosen can be
constructed from the typically used packet-based features, but
consolidating those into flow metrics reduces computation and
data storage requirements at the expense of granularity. As
demonstrated in the results, the granularity of packet-based
features may be an unnecessary complication for this problem.

B. Self-organizing maps in traffic analysis

The application of self-organizing maps to network
traffic analysis and anomaly detection is also an area of
frequent research. In 2003, Ramadas et al [9] studied a SOM
architecture in an IDS at the perimeter of Ohio University.
They used average packet size, directionality and inter-arrival
time to train a SOM per network service. They then threw
exploit packets past the classifier and used a threshold distance
metric to identify abnormal traffic. Our work is similar, but
with different features and a more focused objective.

Heywood et al [6] used SOMs with log file data from unix
workstations in a hierarchical SOM, Labib et al [7] used just
source/destination IPs and protocol as inputs into a SOM to
highlight any communication to new hosts. In 2000, Rhodes et
al [10] developed a SOM-based DNS classifier with a clever
six-feature input that described how many bytes in each packet
fit a particular character class (such as alphabetic, numeric,
control, and non-ASCII).

IV. METHODOLOGY

The approach is discussed in three parts. First is a discussion
of the datasets used and feature extracted, the second is a
discussion of the SOM’s design and finally the SOM’s training
and subsequent use as a classifier.



3

A. Dataset and feature selection

To present full experimental results, three datasets are
required: known-good HTTPS traffic, known-bad SSL tunnel
traffic and a large collection of unknown traffic to test the
classifier’s performance on a large corpus.

To develop the training set of known-good HTTPS traffic,
tcpdump was used to collect all tcp/443 traffic while a
user did normal web browsing over a two day period. Sites
and activites included HTTPS email to Gmail, a corporate
Exchange webmail interface, online banking, custom HTTPS
applications and eCommerce transactions from several
online vendors. The resulting capture file was 1145 unique
tcp/443 sessions.

To develop a set of known-bad SSL tunnel traffic,
stunnel [17] and netcat [20] were used to launch
/bin/bash. Over this connection, a series of normal
unix commands were executed to simulate an attacker
exploring the system and several files transferred to simulate
the exfiltration of sensitive data. tcpdump was again
used to collect the raw traffic, the resulting capture file
contained one session per simulated command shell. Both
the known-good and known-bad raw captures are available
in libpcap format at http://www.jjguy.com/packets.tgz (24MB)

The LBL anonymized enterprise captures [8] were used
to test the classifier’s performance against a large, unknown
dataset. Two days were selected at random (Oct 6 2005 and
Oct 7 2005) resulting in 11084 unique tcp/443 sessions.

For all traces, a modified version of tcpflow [21] was
used for stream reassembly. The publicly available version
was modified to extract the three desired features (bytes to
client, bytes to server, duration in seconds) during reassembly.
A patch with the modifications for tcpflow v0.21 is available
at http://www.jjguy.com/tcpflow.patch.

B. Self-organizing map

The SOM is a 10 x 10 rectangular mesh of nodes as
described by Kohonen. [4] Each node is associated with a
3-dimensional vector to store the three features. The chosen
features are naturally unbounded, so they are transformed by
the logistic function to bound the feature space between (-1, 1):

f(x) = 1
1+e−rx

The value r is set to 10−6 for byte counts and 10−2 for
connection duration. This provides granularity to distinguish
amongst the most common values. The best matching node
is the closest node as determined by standard Euclidean
distance calculation between the weights.

C. Training and classification

All weights of all nodes were initialized to random values,
uniformly distributed across the feature space. The 1145

Fig. 1. Map randomly initialized before training; top-left is (0,0), bottom-
right is (1,1). y-axis represent bytes to client, x-axis bytes to server and circle
diameter session duration in seconds.

Fig. 2. A map after training with the known good dataset

known-good sessions were used to train the map. The
known-bad and unknown sessions were compared against
the trained map. If the distance from the input vector to the
best matching node was greater than a threshold value k, the
input vector was flagged as abnormal traffic. For the results
in Section V, k = 0.25.

To visualize the map, nodes were plotted as red circles
on a two-dimensional x/y scale, with the y-axis representing
bytes to the client, x-axis representing bytes to the server and
the diameter of the circle representing duration in seconds.
Figure 1 shows a map after initialization, but before training.
Figure 2 is the map after being trained on the known good
sessions.

V. RESULTS

A. Known bad testing

Using a profile of an attacker connected to a reverse SSL
command shell for 83 minutes, exploring the system and
transferring 3 files between 10 and 20 megabytes produced
the a session with 42,966,322 bytes to server, 1524 bytes to



4

Fig. 3. Trained map, with the known-bad session plotted as a black rectangle.

client and 5008 seconds. This input vector was a distance
of 0.36 from the closest matching node in the trained map.
Figure 3 shows a trained map as described above with the
known-bad point mapped as a black rectangle.

The point is clearly far outside the profile of normal
HTTPS traffic and has an equally large distance from the
best matching node. If we isolate just the bytes to server
metric, the maximum value in the trained map equates to
about 1 megabyte sent from client to server. Thus, if an
attacker exfiltrates anything over 1 megabyte, he is in danger
of being flagged as abnormal traffic. Of course, as evidenced
in Figure 3 the map nodes (circles) with the largest bytes
to server also have large bytes to client. For the attacker’s
profile of small commands sent from the server, he will be
limited to just hundreds of kilobytes before being in danger
of being flagged as abnormal traffic. This danger is further
increased by the duration measure.

There is a subjective analysis in how bad known-bad needs
to be; the exfiltration of 42 megabytes of data over the course
of an hour is a certainly a less frequent occurrence than
an attacker spending 10 minutes and transferring no files.
However, in a corporate enterprise environment, data theft is
the amongst the most long-lasting and damaging results of an
intrusion.

B. Large scale performance

The dataset used to train the map was clearly narrow. While
the profile should mimic most HTTPS traffic, how well will
it scale on a enterprise network with thousands of concurrent
hosts and a more diverse use of SSL traffic? Using LBL’s
enterprise captures, [8] all tcp/443 sessions were compared
to a trained map. Any session with a distance to the best
matching node greater than the threshold k = 0.25 was flagged
as abnormal traffic. Of the 11084 sessions in the LBL capture,

Fig. 4. Trained map, with abnormal sessions from the LBL data plotted as
black rectangles.

154 (1.38%) were flagged as abnormal. Figure 4 shows a
trained map with all abnormal LBL sessions plotted as black
rectangles. The results of both are summarized in Table II.

Dataset Total sessions Count abnormal (%)
Known good 1145 n/a
Known bad 1 1 (100%)
LBL unknown 11084 154 (1.38%)

TABLE II
RESULTS OF SOM CLASSIFIER ON EACH DATASET

Since the LBL data is anonymized and payloads stripped,
there does not exist sufficient data to validate the abnormal
sessions. It is assumed they are all legitimate network traffic
and simply represent different applications using SSL. There
is a large cluster of sessions with high bytes in both direction
(those in the bottom right of Figure 4), while the rest represent
large uploads from client to server. Of course, as a national
lab LBL is a candidate for attack by other nation-states. In
2007, law enforcement officials were investigating intrusions
at LBL and suspected nation-state attackers1.

Even if all abnormal sessions are legitimate, a false
positive rate of 1.38% is better than or consistent with other
techniques doing similar analysis. For instance, Wright’s
2004 HMM protocol detector classified HTTP with a 3.1%
failure rate and SMTP with a 2.1% failure rate. Dusi’s
2009 Tunnel Hunter technique classified chat tunneled over
SSH with a 9.1% failure rate. More direct comparisons are
difficult due to different objectives of the available techniques.

VI. CONCLUSION

HTTPS traffic follows a startlingly narrow profile. Using a
profile from one user normally browsing the web for just a

1http://abcnews.go.com/TheLaw/Technology/story?id=3966047



5

few hours, the self-organizing map filtered 98.6% of sessions
from a large, enterprise network with thousands of hosts.

A. Effectiveness

However, used alone the technique is insufficient. While
154 abnormal sessions is significantly fewer than the 11,000
sessions analyzed, manual analysis of 154 connections every
two days is a non-trivial effort. The technique may be effective
as a data reduction methodology, to feed the resulting session
information to a more computationally-intensive task. It may
also be more effective combined with hand-crafted filters of
known-good servers to remove common sessions with abnor-
mal characteristics from custom applications. Finally, it may
be worthwhile to capture session data from other applications
using SSL and train the map with both HTTPS profiles. In the
LBL data, it may account for the application with the sessions
clustered in the bottom right of Figure 4.

B. Feature selection

The effectiveness of session-based features instead of
packet-based features is worth further consideration. Wright,
et al’s 2006 paper [14] developed protocol profiles using
packet-based features to produce protocol detectors. It is worth
further exploration to discover if there are similar distinctions
in session-based features between major protocols. With net-
work speeds constantly increasing, the reduced data storage
and computation time for session features will enable wider
application if successful.

C. Attacker avoidance

If an attacker was aware an organization was using session
profiling as described above, could he avoid detection? Moving
the reverse command shell to another protocol could be miti-
gated by good outbound filtering and other tools. The attacker
could limit the data exfiltrated and duration of his connections,
but that would negatively impact his objective for gaining
access in the first place. The attacker could programmatically
limit the data transferred in any single connection to his
own threshold value and force a new connection, but the
SOM could add a fourth feature to track count of multiple
connections over time between client and server. Finally, the
attacker could multiplex his tunnel between multiple external
servers each acting as a proxy to a single hidden server
reassembling the traffic, but this is a significant increase in
complexity.

REFERENCES

[1] K. Borders, A. Prakash, Web tap: detecting covert web traffic. CCS04:
Proceedings of the 11th ACM conference on Computer and Communi-
cations Security, Washington DC, USA, 2004, pp. 110120.

[2] M. Dusi, M. Crotti, F. Gringoli, L. Salgarelli, Tunnel Hunter: Detect-
ing Application-Layer Tunnels with Statistical Fingerprinting, Elsevier
”Computer Networks” (COMNET), Vol.53, No.1, pp. 81-97, Jan. 2009.

[3] J Horton, R Safavi-Naini, Detecting Policy Violations through Traffic
Analysis, 22nd Annual Computer Security Applications Conference (AC-
SAC ’06), Miami Beach, Florida, USA, December 2006, 109-120.

[4] T. Kohonen. Self-Organizing Maps. Berlin: Springer, 1995.

[5] M. Liberatore, B. N. Levine, Inferring the source of encrypted http
connections CCS 06: Proceedings of the 13th ACM conference on
Computer and Communications Security, Alexandria, Virginia, USA,
2006, pp. 255263.

[6] Peter Lichodzijewski, A. Nur Zincir-Heywood, Malcolm I. Heywood,
Host-based intrusion detection using self-organizing maps, Proceedings
of the 2002 IEEE World Congress on Computational Intelligence, 2002.

[7] K. Labib, R. Vemuri, NSOM: a real-time network-based intrusion detec-
tion system using self-organizing maps, Networks and Security, 2002.

[8] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace
anonymization. SIGCOMM Comput. Commun. Rev., 2006.

[9] Manikantan Ramadas, Shawn Ostermann, and Brett Tjaden, Detecting
Anomalous Network Traffic with Self-organizing Maps RAID 2003, LNCS
2820, pp. 3654, 2003.

[10] Rhodes B., Mahaffey J., Cannady J., Multiple Self-Organizing Maps for
Intrusion Detection Proceedings of the NISSC 2000 conference.

[11] Dawn Song, David Wagner, and Xuqing Tian. Timing analysis of
keystrokes and SSH timing attacks. In Proceedings of the 10th USENIX
Security Symposium, August 2001.

[12] Charles Wright, Fabian Monrose, and Gerald M Masson. HMM profiles
for network traffic classification (extended abstract). In Proceedings of the
2004 ACM Workshop on Visualization and Data Mining for Computer
Security, pages 915, October 2004.

[13] Charles V. Wright, Fabian Monrose, Gerald M. Masson, On Inferring
Application Protocol Behaviors in Encrypted Network Traffic. Journal of
Machine Learning Research 7 (2006) 2745-2769,

[14] C. Wright, F. Monrose, and G. Masson. Using visual motifs to classify
encrypted traffic. Proceedings of the ACM Workshop on Visualization for
Computer Security, 2006

[15] dns2tcp, open-source DNS tunnel software,
http://www.hsc.fr/ressources/outils/dns2tcp/index.html.en

[16] HTTPTunnel, open-source HTTP tunnel software,
http://www.nocrew.org/software/httptunnel.html

[17] STunnel, open source SSL tunnel software, http://www.stunnel.org
[18] The Metasploit Project, http://www.metasploit.com/
[19] tcpdump, originally a product of LBL’s Network Research Group,

http://ee.lbl.gov/
[20] netcat, the network swiss army knife, http://netcat.sourceforge.net/
[21] The TCP Flow Recorder, http://www.circlemud.org/ jel-

son/software/tcpflow/


